CHAPTER-4

WAVE EQUATIONS

Structure

4.1 Wave Equation — Solution by spherical means

4.2 Non-homogeneous equations

4.3 Energy methods for Wave Equation
4.5 Wave Equation
The homogeneous Wave equation is

u, —Au=0 (D)

and the non-homogeneous Wave equation

Uy —Au=f )

Here t>0 and x €U , where U < R"is open. The unknown is U:U x[0,00) = R,u=u(x,t), and the
Laplacian A is taken with respect to the spatial variables X = (X1 Xn). In equation (2) the function
f :U x[0,00) > Riis given.

Remarks: 1. The Wave equation is a simplified model equation for a vibrating string (n=1). For n=2, it
is membrane and it becomes an elastic solid for n=3. u(x,t) represents the displacement in some direction
of the point x at time t > O for different values of n.

2. From physical perspective, it is obvious that we need initial condition on the displacement and velocity
at time t=0.

Solution of Wave equation by spherical means (for n=1)

Theorem: Derive the solution of the initial value problem for one-dimensional Wave equation
Uy —Ug =0 in Rx(0,0) .o (D)
u=g,u =h on Rx{t=0} .. ()

where g, h are given at time t=0..

Proof: The PDE (1) can be factored as

(2+QJ(Q—Eju—u -u, =0 3
ot ox)\ot ox o - 3)
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Set

0 0
v(x,t)_(a—&ju(x,t) .. (4)
Then, equation (4) becomes
Vo (X,t)+v, (xt)=0 (xeR,t>0) .. (5

Equation (5) becomes the transport equation with constant coefficient (b=1).

Let v(x,0)=a(x) ... (6)

We know that the fundamental solution of the initial-value problem consisting of transport equation (5)
and condition (6) is

v(x,t)=a(x-t),xeR,t>0 . (D
Combining equation (4) and (7), we obtain
U (xt)—u, (xt)=a(x—t) in Rx(0,) .. (8
Also
u(x,0)=g(x) in R .. (9)

By virtue of initial condition (2), Equations (8) and (9) constitute the non-homogeneous transport
problem. Hence its solution is

t
u(x,t (x+1) +Ia x+ s—t)( —s)ds
0

X+t

:g(x+t)+EIa(y)dy - (10)  (x+t-2s=Y)

x—t

The second initial condition in (2) imply
a(x)=v(x,0)
=U,(x,0)-u,(0,0)

=h(x)-g'(x),xeR .. (11)
Substituting (11) into (10)

x+t

u(x,t)=g(x+t)+ I[h -g'(y)]dy

X+t

_[g X+t)+g(x— t]+lj h(y)dy ...(12)

for xeR,t>0.

This is the d” Alembert’s formula.
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Application of d’ Alembert’s Formula
Initial/boundary-value problem on the half line R, = {X > O} .

Example: Consider the problem

Uy — Uy in R, x(0,0)
=g, U =h on R, x{t=0} ..(1)
u=0 on {x=0}x(0,0)

where g, h are given, with

9(0)=0,h(0)=0. . ()

Solution: Firstly, we convert the given problems on the half-line into the problem on whole of R We do
so by extending the functions u, g,hto all of R by odd reflection method as below we set.

~(x,t):{ u(xt) forx>0,t>0

(—xt) forx<0,t>0 - ©)

g(x) forx>0
-g(x) forx<0 -3

- 109, 0

x) forx<0

Now, problem (1) becomes

l]tt :Uxx in RX(O,OO)} (6)

(=§,0, =honRx{t=0}

Hence, d’ Alembert’s formula for one-dimensional problem (6) implies

X+t

G(x,t :—[g X+1)+g(x- t]+1_|. h(y)dy (7)

X—t

Recalling the definition of U, g,ﬁ in equations (3)-(5), we can transform equation (7) to read for
x>0,t>0

%[g(x+t)+g(x—t)]+% J. h(y)dy

o if x>t>0
u(xt)= » _ (8)

%[g(xﬂ)—g(t—x)}r% J. h(y)dync Osxs<t

—X+t

Formula (8) is the solution of the given problem on the half-line R, = {x > 0} .
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Solution of Wave Equation (for n=3)

Theorem: Derive Kirchhoff’s formula for the solution of three-dimensional (n=3) initial-value problem

U;~AU=0 in R®x(0,) (1)
u=g on R°x{t=0} ..(2)
U=h on R®x{t=0} ..(3)

Solution: Let us assume that u € C? (R3 x[O,oo)) solves the above initial-value problem.

As we know

U(xr,t)= gg u(y,t)ds(y) ..(4)

B(x,r)
defines the average of U(.,t)over the sphere dB(X,r). Similarly,

G(xr)= <j> g(y)ds(y) (5)

oB(x,r)

H(xr)= c_f> h(y)ds(y) ...(6)

oB(x,r)
We here after regard U as a function of r and t only for fixed x.
Next, set

U=ru, ..(7)

(N

=rG,H =rH .(8)
We now assert that U solve

U,-U,=0in R, x(0,)
U=G on R x{t=0}
) R+><{t=O}
U=0 on {r=0}x(0,x)

...9)

We note that the transformation in (7) and (8) convert the three-dimensional Wave equation into the
one-dimensional Wave equation.

From equation (7)

Utt = rUtt

2
= r{u v +FUr}, Laplacian for n=3
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:(L]r)rzurr ... (10)
The problem (9) is one the half-line R, ={r >0}.

The d’ Alembert’s formula for the same, for 0 <r <t is

r+t

U(x;r,t)=%[G(r+t)—é(t—r)]+% [ H(y)dy L
From (4), we find
u(xt)= IirQU (x;r,t) ... (12)

Equations (7),(8),(11) and (12) implies that

r
G(t+r)-G(t- b
!LT{ (‘|‘r)2r ( r)+%tIrH(y)dy}
=G'(t)+H(t) (13)
Owing then to (13), we deduce
u(x,t)%{t $ g(y)ds(y)}+{t $ h(y)ds(y)} .(14)
aB(x,t) aB(x,t)
But
aB(fm)g(y)ds(y):a/B(Ll)g(tz)ds(z) ... (15)
Hence
%{(ﬁ g(y)ds(y)}z SB {Dg(x+tz)}.zds(z)
B{x.t) 8(0,1)
- Dg(y).(yzxjds(y) ... (16)

oB(x,t)

Now equation (14) and (16) conclude
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u(x,t)= <ﬁ [g(y)+{Dg(y)}.(y—x)+th(y)]ds(y) (17)

oB(x,t)

for XER3,t>0,

The formula (17) is called KIRCHHOFF’S formula for the solution of the initial value problem (1)-(3)

in 3D.

4.6 Non-Homogeneous Problem

Now we investigate the initial-value problem for the non-homogeneous Wave equation
{un ~Au=f in R"x(0,00)

u=0,u, =00onR"x{t =0} (D

Motivated by Duhamel’s principle, which says that one can think of the inhomogeneous problem as a set
of homogeneous problems each starting afresh at a different time slice t = to. By linearity, one can add up
(integrate) the resulting solutions through time to and obtain the solution for the inhomogeneous problem.

Assume that U=U(X,t;s) to be the solution of

{ Uy (- S)-Au(.,s)=0 in R"x(s,o0)
u(.,s)=0

. (2
)=0,u,(s)= f (s)onR"x{t =3 @)
and set
t
u(x,t):ju(x,t;s)ds (xeR"t=0) ...3)
0
Duhamel’s principle asserts that this is solution of equation (1).
Theorem: Solution of Non-homogeneous Wave Equation
Let us consider the non-homogeneous wave equation
U, —Au = f in R"x(0,00)
g
u=0,u =00nR"x{t =0} M
fe C[%}l(R” x[O,OO)) and n>2. Define uas
t
u(x,t):ju(x,t;s)ds (xeR"t=0) .2
0

Then
(i)ueC?(R"x[0,x))
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(ii)U, —AU=Tf in R"x(0,00)

(iii) lim u(xt)=0, lim u,(xt)=0 foreach point x’<R" (xeR",t>0).

( t)—)(xo,O) (%, t)—)(x O)

n+1 n n+2
Proof: (i) If nis odd, [2}4—7 and if nis even, [2}1:7

Also u(.,.;s) e C*(R"x[s,)) foreach s> 0and so ueC*(R"x[0,)).
Hence u e C?(R" x[0,)).

(ii) Differentiating u w.r.t t and x by two times, we have

t
u, (x,t xtt+jutxts jt(x,t;s)ds
0

U, (X, t)=u, (x,t;t)+

O t—

u, (x,t;s)ds

=f(xt)+

[y S——

U, (x,t;s)ds

Furthermore,

t

Au(x,t)= IAu(x,t;s)ds = Iun (x,t;s)ds

0

Thus,

U (X, t)-Au(xt)=f(xt) xeR"t20

(iii) And clearly u(x,0)=u,(x,0)=0 for x e R". Therefore equation (2) is the solution of equation (1).

Examples: Let us work out explicitly how to solve (1) for n=1. In this case, d” Alembert’s formula gives

X+t—s

u(x,t;s):% _[ f(y,s)dy

X—t+s

t X+t—s

u(x,t):%j _[ f (y,s)dyds

0 x—t+s

. ltX+S
ie. _EIIf y,t—s)dyds (xeR,t20)

0 x-s

For n=3, Kirchhoff’s formula implies
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u(xt;s)=(t—s) 4> f(y,s)dsS

OB(x,t—s)

So that
t
u(x,t)=I(t—s)( 4) f(y,s)dSst
0 0B(x,t-s)
1 f(y,s)
= dsd
ar '([aB(xIts) t—s
=ij [ P21 g
472.0(’)8(xr) r
Therefore,
flyt—ly—x
u(xt) 1 (t-ly |)dy (xeR%t=0)
70 B(xt) |y—X|

solves (4) for n=3.
The integrand on the right is called a retarded potential.
4.7 Energy Methods

There is the necessity of making more and more smoothness assumptions upon the data g and h to ensure
the existence of a C? solution of the Wave equation for large and large n. This suggests that perhaps some
other way of measuring the size and smoothness of functions may be more appropriate.

(a) Uniqueness

Let UcR"be a bounded, open set with a smooth boundaryoU , and as usual set
U, =Ux(0,T],I'; =U; —U,, where T>0. We are interested in the initial/boundary value problem

u,—Au=fin U;
u=g on T, . (D
u=h onUx{t=0}

Theorem: There exists at most one function u e C?(U; ) solving (1).

Proof: If Gis another such solution, then w:=u—U solves

w,—Aw=0in  U;
w=0 on I}
w,=0 onUx{t=0}

Set “energy”
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e(t)=%L_[vw2(x,t)+‘Dw(x,t)‘2dx (0<t<T)

Differentiating e(t), we have

é(t)= jwtvvn + Dw.Dw, dx
U
= J.Wt (W, —Aw)dx =0
U

There is no boundary term since w=0, and henceW, =0, on oUx[0,T]. Thus for all
0<t<T,e(t)=e(0)=0,and so W, DwW=0withinU;. Since w=0on Ux{t=0}, we conclude
w=u—-0=0inU;.

(b) Domain of Dependence

As another illustration of energy methods, let us examine again the domain of dependence of solutions
to the Wave equation in all of space.

(xo, to)

B(xo, to-t)

Cone of dependence

For this, suppose u e C? solves

U, ~Au=0 jn R" x(O,oo)
Fix X, € R",t, >0and consider the cone

C={(xt)|0<t<ty|x—x|<t,—t}.





