
 

  

CHAPTER-4 

WAVE EQUATIONS 

Structure  

4.1 Wave Equation – Solution by spherical means 

4.2 Non-homogeneous equations 

4.3 Energy methods for Wave Equation 

4.5 Wave Equation 

The homogeneous Wave equation is  

                                              0ttu u                        …  (1) 

and the non-homogeneous Wave equation 

                                              ttu u f                       …   (2) 

Here 0t   and x U , where nU R is open. The unknown is    : 0, , ,u U R u u x t    , and the 

Laplacian  is taken with respect to the spatial variables  1,..., nx x x . In equation (2) the function 

 : 0,f U R   is given. 

Remarks: 1. The Wave equation is a simplified model equation for a vibrating string (n=1). For n=2, it 

is membrane and it becomes an elastic solid for n=3. u(x,t) represents the displacement in some direction 

of the point x at time 0t   for different values of n. 

2. From physical perspective, it is obvious that we need initial condition on the displacement and velocity 

at time t=0. 

Solution of Wave equation by spherical means (for n=1) 

Theorem: Derive the solution of the initial value problem for one-dimensional Wave equation  

                                                  0tt xxu u   in  0,R                         …   (1) 

                                                           , tu g u h   on  0R t                         … (2) 

where g, h are given at time t=0.. 

Proof:  The PDE (1) can be factored as 

                                                          0tt xxu u u
t x t x

     
      

     
                … (3) 
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Set 

                                                            , ,v x t u x t
t x

  
  

  
                              … (4) 

Then, equation (4) becomes 

                                                             , , 0t xv x t v x t              , 0x R t        … (5) 

Equation (5) becomes the transport equation with constant coefficient (b=1). 

 Let                                         ,0v x a x                                                                  … (6) 

We know that the fundamental solution of the initial-value problem consisting of transport equation (5) 

and condition (6) is 

                                                   , , , 0v x t a x t x R t                           …  (7) 

Combining equation (4) and (7), we obtain 

                                                       , ,t xu x t u x t a x t    in  0,R                    …   (8) 

Also 

                                                      ,0u x g x  in R                                              … (9) 

By virtue of initial condition (2), Equations (8) and (9) constitute the non-homogeneous transport 

problem. Hence its solution is 

                                     
0

, 1

t

u x t g x t a x s t s ds        

                                             
1

2

x t

x t

g x t a y dy





                             … (10)       2x t s y     

The second initial condition in (2) imply 

                                                       ,0a x v x  

                                                                  ,0 0,0t xu x u   

                                                                  ' ,h x g x x R                                          … (11) 

Substituting (11) into (10) 

                                                        
1

, '
2

x t

x t

u x t g x t h y g y dy





       

                                                                    
1 1

2 2

x t

x t

g x t g x t h y dy





                   …(12) 

for , 0x R t  . 

This is the d’ Alembert’s formula. 
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Application of d’ Alembert’s Formula 

Initial/boundary-value problem on the half line  0R x   . 

Example: Consider the problem 

                                                     

 

 

   

0,

, 0 ...(1)

0 0 0,

tt xx

t

u u in R

u g u h on R t

u on x





  


   
    

                                  

where g, h are given, with   

                                   0 0, 0 0g h  .                                                                    …  (2) 

Solution: Firstly, we convert the given problems on the half-line into the problem on whole of R We do 

so by extending the functions , ,u g h to all of R by odd reflection method as below we set. 

                                                       
 

 

, 0, 0
,

, 0, 0

u x t for x t
u x t

u x t for x t

  
 

   
                               … (3) 

                                                        
 

 

0

0

g x for x
g x

g x for x

 
 

 
                                                  …(4) 

                                                         
 

 

0

0

h x for x
h x

h x for x

 
 

  
                                                …(5) 

Now, problem (1) becomes 

                                                        
 

 

0,

0,

tt xx

t

u u Rin

R tonu g u h

   


   
                                               …(6) 

Hence, d’ Alembert’s formula for one-dimensional problem (6) implies 

                                                              
1 1

,
2 2

x t

x t

u x t g x t g x t h y dy





                        …(7) 

Recalling the definition of , ,u g h in equations (3)-(5), we can transform equation (7) to read for 

0, 0x t   

                    

     

     

1 1

2 2 0
,

01 1

2 2

x t

x t

x t

x t

g x t g x t h y dy
if x t

u x t
if x t

g x t g t x h y dy







 


      

 
 

       






                    …(8) 

Formula (8) is the solution of the given problem on the half-line  0R x   . 
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Solution of Wave Equation (for n=3) 

Theorem: Derive Kirchhoff’s formula for the solution of three-dimensional (n=3) initial-value problem 

                                                    0ttu u 
   

 in   3 0,R                                 …(1) 

                                                     u g     on   3 0R t                                       …(2) 

                                                     tu h   on   3 0R t                                         …(3) 

Solution: Let us assume that   2 3 0,u C R   solves the above initial-value problem. 

As we know  

                                                         
 ,

; , ,
B x r

U x r t u y t ds y


                         …(4) 

defines the average of  .,u t over the sphere  ,B x r . Similarly, 

                                                         
 ,

;
B x r

G x r g y ds y


                                 …(5) 

                                                         
 ,

;
B x r

H x r h y ds y


                              …(6) 

We here after regard U as a function of r and t only for fixed x. 

Next, set 

                                                    U rU ,                                                                  …(7) 

                                                    ,G rG H rH                                                         …(8) 

We now assert that U solve 

                                          

 

 

 

   

0,0

0

0

0 0,0

tt rr

t

RinU U

R tonU G

R tonU H

ronU







   


 


 
   

                                    …(9) 

We note that the transformation in (7) and (8) convert the three-dimensional Wave equation into the 

one-dimensional Wave equation. 

From equation (7) 

                                                       tt ttU rU  

                                                              
2

rr rr U U
r

 
  

 
, Laplacian for n=3 
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                                                              2rr rrU U   

                                                               r r
U rU   

                                                               r rr
r

U U                                            … (10) 

The problem (9) is one the half-line  0R r   . 

The d’ Alembert’s formula for the same, for 0 r t  , is  

                                                  
1 1

; ,
2 2

r t

r t

U x r t G r t G t r H y dy



 

                         … (11) 

From (4), we find 

                                                              
0

, lim ; ,
r

u x t U x r t


                                  … (12) 

Equations (7),(8),(11) and (12) implies that 

                                                              
 

0

; ,
, lim

r

U x r t
u x t

r

 
  

 
 

                                                                           
   

 
0

1
lim

2 2

t r

r
t r

G t r G t r
H y dy

r r






   
  

  
  

                                                                              'G t H t                                    …(13) 

Owing then to (13), we deduce 

                                             
 

   
 , ,

,
B x t B x t

u x t t g y ds y t h y ds y
t

 

       
    
       

                  …(14) 

But 

                                    
 

   
 , 0,1B x t B

g y ds y g x tz ds z
 

                                                   … (15) 

Hence 

                 
 

    
 , 0,1

.
B x t B

g y ds y Dg x tz zds z
t

 

   
  

   
   

                                                            
 ,

.
B x t

y x
Dg y ds y

t


 
  

 
                              … (16) 

Now equation (14) and (16) conclude 
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 ,

, .
B x t

u x t g y Dg y y x th y ds y


                                 (17) 

for 
3 , 0x R t  . 

The formula (17) is called KIRCHHOFF’S formula for the solution of the initial value problem (1)-(3) 

in 3D. 

4.6 Non-Homogeneous Problem 

Now we investigate the initial-value problem for the non-homogeneous Wave equation 

                                                 
 

 

0,

0, 0 0

n

tt

n

t

u u f in R

u u on R t

    


   
                                                 … (1) 

Motivated by Duhamel’s principle, which says that one can think of the inhomogeneous problem as a set 

of homogeneous problems each starting afresh at a different time slice t = t0. By linearity, one can add up 

(integrate) the resulting solutions through time t0 and obtain the solution for the inhomogeneous problem. 

Assume that  , ;u u x t s to be the solution of  

                                                  
   

     
 

 

., ., 0 ,

., 0, ., .,

n

tt

n

t

u s u s in R s

u s u s f s on R t s

    


   
                        … (2) 

and set 

                                                     
0

, , ;

t

u x t u x t s ds               , 0nx R t                     …(3) 

Duhamel’s principle asserts that this is solution of equation (1).                                           

Theorem: Solution of Non-homogeneous Wave Equation 

Let us consider the non-homogeneous wave equation 

 

 

0,

0, 0 0

n

tt

n

t

u u f in R

u u on R t

    


   
                                                    …  (1) 

  
1

2 0,
n

nf C R
 
     and 2n  .  Define u as 

                                                       
0

, , ;

t

u x t u x t s ds            , 0nx R t                      … (2) 

Then 

(i)   2 0,nu C R    
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(ii) ttu u f    in  0,nR    

(iii)
   

 
   

 
0 0, ,0 , ,0

lim , 0, lim , 0t
x t x x t x

u x t u x t
 

   for each point 0 nx R  , 0nx R t  . 

Proof: (i) If n is odd, 
1

1
2 2

n n  
  

 
 and if n is even , 

2
1

2 2

n n  
  

 
 

Also     2.,.; ,nu s C R s    for each 0s  and so   2 0,nu C R   . 

Hence   2 0,nu C R   . 

(ii) Differentiating u w.r.t t and x by two times, we have 

                                      
0 0

, , ; , ; , ;

t t

t t tu x t u x t t u x t s ds u x t s ds     

                                   
0

, , ; , ;

t

tt t ttu x t u x t t u x t s ds    

                                               
0

, , ;

t

ttf x t u x t s ds    

Furthermore, 

                                     
0 0

, , ; , ;

t t

ttu x t u x t s ds u x t s ds      

Thus, 

                                     , , ,ttu x t u x t f x t        , 0nx R t   

(iii) And clearly    ,0 ,0 0tu x u x   for nx R . Therefore equation (2) is the solution of equation (1). 

Examples: Let us work out explicitly how to solve (1) for n=1. In this case, d’ Alembert’s formula gives 

                                            
1

, ; ,
2

x t s

x t s

u x t s f y s dy

 

 

   

                                            
0

1
, ,

2

t x t s

x t s

u x t f y s dyds

 

 

    

 i.e.                                     
0

1
, ,

2

t x s

x s

u x t f y t s dyds





               , 0x R t              …  (5) 

For  n=3, Kirchhoff’s formula implies 
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 ,

, ; ,
B x t s

u x t s t s f y s dS
 

    

So that 

                                             
 0 ,

, ,

t

B x t s

u x t t s f y s dS ds
 

 
  
 
 

   

                                                     
 

 0 ,

,1

4

t

B x t s

f y s
dSds

t s
 


   

                                                    
 

 0 ,

,1

4

t

B x r

f y t r
dSdr

r



    

Therefore, 

                                        
 

 ,

,1
,

4
B x t

f y t y x
u x t dy

y x

 


                3 , 0x R t   

solves (4) for n=3. 

The integrand on the right is called a retarded potential. 

4.7 Energy Methods 

There is the necessity of making more and more smoothness assumptions upon the data g and h to ensure 

the existence of a 2C  solution of the Wave equation for large and large n. This suggests that perhaps some 

other way of measuring the size and smoothness of functions may be more appropriate.  

(a) Uniqueness 

Let nU R be a bounded, open set with a smooth boundary U , and as usual set 

 0, ,T T T TU U T U U     , where T>0. We are interested in the initial/boundary value problem 

                                                

 0

tt T

T

t

u u f in U

u g on

u h onU t

 


 
   

                        … (1) 

Theorem: There exists at most one function  2

Tu C U  solving (1). 

Proof: If u is another such solution, then :w u u   solves 

                                                  

 

0

0

0 0

tt T

T

t

w w in U

w on

w onU t

 


 
   

 

Set “energy” 
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221

, ,
2

t

U

e t w x t Dw x t dx                0 t T   

Differentiating e(t), we have 

                                                   .t tt t

U

e t w w Dw Dw dx   

                                                           0t tt

U

w w w dx       

There is no boundary term since w=0, and hence 0tw  , on  0,U T  . Thus for all 

   0 , 0 0,t T e t e    and so , 0tw Dw  within TU . Since 0w  on  0U t  , we conclude 

0w u u    in TU . 

(b) Domain of Dependence 

As another illustration of energy methods, let us examine again the domain of dependence of solutions 

to the Wave equation in all of space. 

 

Cone of dependence 

For this, suppose 2u C solves 

                                                         0ttu u   in  0,nR    

Fix 0 0, 0nx R t  and consider the cone 

                                                        0 0 0, 0 ,C x t t t x x t t      . 




